

The IT Complexity Crisis: Danger and Opportunity

A White Paper by Roger Sessions

October 22, 2009

Table of Contents

Introduction ... 1
Note on Calculations ... 2
The Coming IT Meltdown .. 2

Calculating the Cost of the Financial Crisis ... 2

Calculating the Cost of IT Failure .. 3

Cause of Failure .. 5

Measuring IT Complexity ... 6

Designing Simpler IT Systems ... 8
Calculating the Complexity of the Standard Architecture .. 10
The SIP Process For The Interlibrary Loan System ... 11

Calculating the Complexity of the SIP Architecture .. 15
Simplifying Procurement .. 16

Quick Review.. 17
Impediments to Simplicity .. 18

Reason 1. Fear of New Process... 18

Reason 2. Fear of managing multiple vendors.. 18
Reason 3. Political Realities ... 19

Introducing Simplicity Into Your Organization .. 19
Call to Action .. 20

References ... 21
About Roger Sessions ... 22

Legal Notices .. 22

ObjectWatchNewsletter-059-20bb.doc#_Toc243793358
ObjectWatchNewsletter-059-20bb.doc#_Toc243793359
ObjectWatchNewsletter-059-20bb.doc#_Toc243793361
ObjectWatchNewsletter-059-20bb.doc#_Toc243793363
ObjectWatchNewsletter-059-20bb.doc#_Toc243793364
ObjectWatchNewsletter-059-20bb.doc#_Toc243793365

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 1

In a crisis, be aware of the danger – but recognize the opportunity. - John. F. Kennedy

Introduction
Those of you who have been following my writing know that I have a soft spot for New

Zealand. Among its many contributions to civilization is the best coffee in the world

served as a concoction called a “flat white.” But now I have another reason to love New

Zealand. I see New Zealand as offering the world a glimmer of hope of escaping the

coming meltdown of IT.

The coming meltdown of IT; the out of control proliferation of IT failure is a future

reality from which no country – or enterprise - is immune. The same IT failures that are

eroding profitability in the United States are impacting the economy in Australia. IT

failures are rampant in the private sector, the public sector, and the not-for-profit sector.

No place is safe. No industry is protected. No sector is immune. This is the danger, and it

is real.

Surely this is a bit overdramatic?

I’ll let you judge the drama of this statement. But the fact is that, worldwide, we are

already losing over USD 500 billion per month on IT failure, and the problem is getting

worse. If you find that figure unbelievable, I ask you to suspend judgment for a few

pages. The numbers are estimates, of course. The precise numbers are not the point. The

sheer magnitude of the numbers is what is important. As IT professionals we have a

responsibility to understand how we can prevent the continuing spiral of failures that is

burying us.

Okay, that’s the bad news. I prefer, however, to view this, not as a catastrophe, but as an

opportunity. After all, if we can reverse this trend, we will have an additional USD 500

billion per month to spend on things we care about: things like corporate profitability,

improving the delivery of government services, increasing the effectiveness of non-profit

organizations, and saving the environment. There is a lot of goodness we can buy for our

world with 500 billion dollars per month.

I firmly believe this problem is solvable. Not only will the solution bring compelling

financial rewards, it will bring many non-tangible rewards as well, such as:

 reducing the complexity of procurement

 helping small and mid-sized businesses compete on more projects

 increasing the agility of organizations

 making the workplace a more collaborative environment

 delivering IT systems on-time and within business expectations.

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 2

But we must understand a problem before we can solve it. I will present compelling

evidence that the proliferation of IT failures is caused by increasing IT complexity. And

this is good news, because complexity is a solvable problem. The solution is simplicity.

Simplicity is not so easy to achieve. It requires commitment, training, and process.

Simplicity needs to start someplace. In the public sector, New Zealand is a good

candidate. But this problem is not limited to the public sector. Any enterprise is eligible.

Maybe it will start someplace else, perhaps with you, right here, right now.

Note on Calculations
This article is based on a large number of calculations and extrapolations. My readers

generally have mixed feeling about math. Some don’t care about math and just want to

know the bottom line. Some don’t believe the bottom line unless they see the math that

led there. I have therefore chosen a compromise. When I refer to calculations, I will start

by giving the bottom line. I will follow this with an insert on how I calculated the bottom

line. If you care about the calculations, read the insert. If you don’t, don’t.

The Coming IT Meltdown
By all accounts, the financial crisis is a poster child for a meltdown. I haven’t seen

worldwide estimates for the cost of the financial crisis, but the crisis has cost the United

States about USD 1.5 trillion. I use that as my benchmark for a meltdown. Does the

current state of IT qualify by this definition?

Today, IT failures are taking a heavy toll. Worldwide, the annual cost of IT failure is

around USD 6.18 trillion (that’s over USD 500 billion per month). If you are interested in

how I calculate the cost of IT failures, see the insert Calculating the Cost of IT Failure.

The annual cost to the US economy is around USD 1.22 trillion per year. New Zealand

(remember New Zealand?) is spending USD 3.9 billion per year, quite a chunk of change

for a country with a total annual Gross Domestic Product of USD 44 billion.

Calculating the Cost of the Financial Crisis
In both 2008 and 2009, bailout packages were approved for the financial

crisis in the United States [01]. In 2008 the bailout package cost USD 700

billion. In 2009 the bailout package cost USD 787 billion. Assuming that

no further bailout packages are needed, the total cost of the financial

meltdown to the United States taxpayer will be USD (700 + 787) billion =

USD 1.49 trillion.

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 3

The United States is losing almost as much money per year to IT failure as it did to the

financial meltdown. However the financial meltdown was presumably a one-time affair.

The cost of IT failure is paid year after year, with no end in sight.

These numbers are bad enough, but the news gets worse. According to the 2009 U.S.

Budget [02], the failure rate is increasing at the rate of around 15% per year. If this trend

continues, within another five years or so a total IT meltdown may be unavoidable.

Okay. So there is plenty of bad news here. But there is also some good news. As I said,

we have some incredible opportunities. If, say, the United States could solve the problem

of IT failure, it could increase its GDP by over one trillion USD per year. A typical

private company could increase its profitability by at least 25% with little risk and

minimal investment. A public sector entity could improve its services by 25% without

increasing taxes a penny. A non-profit organization could do 25% more good for the

world. And 25% is only the beginning of future savings. That number could be much

greater.

So while the risk of ignoring this problem is significant, the payoff for addressing this

problem is huge.

Calculating the Cost of IT Failure

According to the World Technology and Services Alliance, countries

spend, on average, 6.4% of the Gross Domestic Product (GDP) on

Information Communications Technology, with 43% of this spent on

hardware, software, and services. The other 57% is spent on

communications technology. This means that, on average, 6.4 X .43 =

2.75 % of GDP is spent on hardware, software, and services. I will lump

hardware, software, and services together under the banner of IT.

According to the 2009 U.S. Budget [02], 66% of all Federal IT dollars are

invested in projects that are “at risk”. I assume this number is

representative of the rest of the world.

A large number of these will eventually fail. I assume the failure rate of an

“at risk” project is between 50% and 80%. For this analysis, I’ll use the

average: 65%.

These numbers might be conservative. The Standish Group, in a widely

quoted study on IT failure [03], estimates failure rates that appear to be

higher. They estimate that projects that are late, over budget, failing to

meet expectations or cancelled outright at 68% of all IT projects whereas I

am calculating 43% (.65 X .66) of the total IT budget.

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 4

One requires caution when comparing our numbers, however, because The

Standish Group is looking at the percentage of projects that will be

challenged or cancelled, whereas I am looking at the percentage of the IT

budget that will fail to deliver value. Looking at the percentage of IT

projects (as does Standish) is less meaningful than looking at percentage of

budgets (as I do). The reason for this is that many IT projects are small in

scope and these projects are less likely to have problems. They contribute a

lot to the “percentage of projects” that succeed, but relatively little to the

“percentage of IT budget” invested in successful projects.

Had The Standish Group looked at IT budgets, it is likely their failure rate,

already higher than mine, would have been higher yet.

The cost of a failed project is only the tip of the iceberg. Every project

failure incurs both direct costs (the cost of the IT investment itself) and

indirect costs (the lost opportunity costs). Determining an average for these

indirect costs is difficult, but an example might help.

Between 1994 and 2005, the Internal Revenue Service spent $185 million

on a new electronic fraud detection system. The project was abandoned in

2006 [04].

According to a report in 2008 [05] by the Treasury Inspector General for

Tax Administration, the Federal Government lost approximately $894

million in fraudulent refunds during 2006 because the system was not

operational.

So in this case, the direct cost of the failure was $185 million and the

indirect cost (the lost opportunity costs) was $894 million. Of course, that

$894 million was lost just in 2006. Presumably the same amount was lost in

2007 bringing the total up to $1.788 billion. And this doesn’t include

money lost beyond 2007, interest payments on the $1.788 billion, or the

cost of people hired to try to do the work the system would have done had

it been delivered. So the indirect costs of this $185 million failure far

exceeded $1.788 billion, a ratio of well over 9.6 to 1.

When thinking about indirect costs, you need to include the costs of

replacing the failed system, the disruption costs to your business, the lost

revenue because of the failed system, the lost opportunity costs on what

that lost revenue could have driven, the costs to your customers, lost market

share, and on and on. And you need to consider these costs over the number

of years the system would have been functional had it not failed (or at least

the number of years until you can put another system in place.)

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 5

Cause of Failure
Is there a primary cause of these IT failures? If so, what is it? An important clue is the

rising number of failures. According to the U.S. budget, the number of “at-risk” IT

projects has been steadily climbing over the last three years, from 30% in 2007 to 43% in

2008 to 66% in 2009. Whatever it is that is causing the problem must therefore also be

climbing at a comparable rate.

Some have suggested the culprit is poor communications between business and IT. While

poor communications is without a doubt a contributing factor, there is no evidence that

business and IT have gotten any worse at communicating between 2007 and 2009.

You can see that indirect costs add up quickly. I will assume that the ratio

of indirect to direct costs is between 5:1 and 10:1. For this analysis, I’ll take

the average: 7.5:1.

To find the predicted cost of annual IT failure, we then multiply these

numbers together: .0275 (fraction of GDP on IT) X .66 (fraction of IT at

risk) X .65 (failure rate of at risk projects) X 7.5 (indirect costs) = .089. To

predict the cost of IT failure on any country, multiply its GDP by .089.

The following table performs this calculation of various regions of the

world.

Region GDP* Cost of Failure*

World 69,800.00 6,180.48

USA 13,840.00 1,225.47

New Zealand 44.00 3.90

UK 2,260.00 200.11

Texas 1,250.00 110.68

*USD Billions

 Table 1. Predicted Annual Cost of IT Failure

Of course, these calculations are estimates. I recommend you don’t get

overly focused on the exact amounts. I could be off by ten or twenty

percent in either direction. The real point is not the exact numbers, but the

magnitude of the numbers and the fact that the numbers are getting worse.

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 6

Some have suggested the culprit is increased functionality. There are numerous

arguments against functionality being the problem. And there is no evidence that

functionality has increased at the same rate as IT failures have increased.

The almost certain culprit is complexity. Actually, complexity is indirectly related to

functionality, in that a 25% increase in functionality increases complexity by 100%

(Glass’s Law, see [06]). However complexity is even more impacted by system

organization. So complexity goes up as functionality increases, goes down as

functionality is partitioned, but then goes up again as connections are made between

systems. The overall complexity of a system is a delicate balance between all three of

these factors.

Complexity seems to track nicely to system failure. The more complex a system is, the

harder and more costly it is to work on that system. And while complexity can correlate

with functionality, there are many examples of highly functional systems that are

organized much simpler than other systems with much less functionality. Empirically, we

have all experienced that the difficulty of maintaining a system is much more related to

how functions are organized than to the number of functions.

It is actually possible to measure the complexity of an IT system. We only have anecdotal

evidence so far, but I strongly believe that when we plot complexity against failure rates,

we will see an almost perfectly linear relationship.

The exact formula for measuring the complexity of a system is given by what I call

Sessions’s Summation of Bird’s Formulation of Glass’s Law (a mouthful, no?) For those

who would like to understand how this equation works, see the Measuring IT Complexity

insert.

Once we understand how complex some of our systems are, we understand why they

have such high failure rates. We are not good at designing highly complex systems. That

is the bad news. But we are very good at architecting simple systems. So all we need is a

process for making the systems simple in the first place.

Measuring IT Complexity
Measuring IT complexity is easier than you might think. It all starts with

Glass’s Law [06], that for every 25% increase in the complexity of the

problem space, there is a 100% increase in the complexity of the solution

space. In IT systems, there are two contributors to the complexity of the

problem space. The first is the number of business functions in the system.

The second is the number of connections that system has to other systems.

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 7

We need to start with a standard complexity unit (SCU). I’ll define one

SCU as the amount of complexity that a system has which contains only

one business function and no connections to other systems. Based on

Glass’s Law, this is the least complex system possible.

Okay, we start with a system with one business function and no

connections. By definition, this has 1 SCU. Now let’s start adding more

business functions into the system. As we add more functions into the

system, the number of SCUs goes up a predictable amount. This amount is

calculated using Bird’s Formula. Bird is Chris Bird, who showed me how to

rewrite Glass’s Law as a mathematical formula.

Let’s say a system S has bf number of business functions, and no

connections to other systems. Then the number of SCUs in that system is

given by

S = 10 raised to the power of ((log(2)/log(1.25) X log (bf))

The log(2) and the log(1.25) are both constants, and can thus be combined,

giving

S = 10 raised to the power of (3.1 X log(bf))

or, more simply,

S = 10 3.1 log(bf)

Similarly, we can calculate the complexity of a system with one business

function and cn connections to other systems. Note that I am simplifying

the analysis by assuming that a new connection adds about the same amount

of complexity as a new business function, which follows my experience. If

you don’t agree, it is easy enough to modify the equation accordingly. But

given my assumption, the complexity because of connections is as follows:

S = 10 3.1 log(cn)

Most systems have both multiple business functions and multiple

connections, so we need to add the two together:

S = 10 3.1 log(bf) + 10 3.1 log(cn)

Most systems are not made of a single system, but a number of smaller

systems, each of which has a complexity described by the above equations.

An SOA, for example, would have multiple services, each of which has a

complexity rating.

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 8

Designing Simpler IT Systems
Let’s take a moment to review. So far, I have made the following points:

 IT Failure is a major problem (or opportunity, depending on your perspective).

 IT Failure is most likely a function of complexity.

 We know how to measure complexity.

If we assume that our system is an SOA, then the complexity of the SOA

as a whole is the summation of the complexity of each of the individual

services. This is expressed as what I describe as Sessions’s Summation of

Bird’s Formulation of Glass’s Law. It looks like this:

Now while Sessions’s Summation looks rather ugly, it is in fact easily

calculated using a straightforward spreadsheet.

Sessions’s Summation gives us an easy way to compare two different

architectures with respect to their complexity. Just plug both into

Sessions’s Summation and read the resulting number. That number is the

complexity in SCUs of the architecture. If one architecture has a total SCU

of 1,000 and another a total SCU of 500, then the first is twice as complex

as the second. It is also twice as likely to fail.

Notice that while functionality is a factor in complexity, it is not the major

factor. Much larger factors are how many services there are, how many

functions there are in each of the services and how those services are

connected to each other.

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 9

You might think that this is the end of the story. All we need to do is measure the

complexity of an architecture before we build it, and if it is complex, do something else.

But being able to measure the complexity of an architecture gets us only part of the way.

Our goal should be to design the least complex architecture possible that solves the

business problem. This is our only hope of controlling complexity. Being able to measure

the complexity of an architecture does not tell us whether there is a simpler architecture

right around the corner.

Suppose, for example, that we designed an architecture that measured 10,000 Standard

Complexity Units (SCUs). Is that the best we can do? What if there is another

architectural solution that has only 5,000 SCUs? That second solution would have half

the complexity, cost half as much to build, and be half as likely to fail. Does it exist? And

if it does, how do we find it?

We need a process that guides us to the simplest possible architecture from the beginning.

This means finding the best possible balance between the number of functions in systems

and the number of connections between systems.

The process that does this is called Simple Iterative Partitions (SIP). SIP is a pre-design

process that partitions business functions into sub-systems such that the overall system

has the least possible complexity needed to solve the business problem.

I won’t describe the SIP process in detail here, since I have done that in numerous other

places, most notably, my recent book [07] and White Papers [08]. I’ll just note that it is a

five-phase iterative process as shown in Figure 1 and that most of what we think of as

architecture and implementation fits in the final phase.

PreparationPreparation

SIP Phase

PartitioningPartitioning SimplificationSimplification PrioritizationPrioritization DeliveryDelivery

Figure 1. The Five Phases of SIP

Briefly, SIP works as follows. First, a system is decomposed into a collection of low-

level business functions. These business functions are then analyzed and placed in

subsets based on synergistic relationships. These subsets are then treated as sub-systems

and/or sub-projects. In a service-oriented architecture, these become the definitions for

services.

The SIP-driven simplification can be dramatic. This is easiest to see in an example.

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 10

Borrower ILLA Lender

Borrow Book

Process Positive

Response

Process Negative

Response

Process Borrow Request

Request IL Loan

Process Positive Lender

Response

Process Negative Lender

Response

Receive New Book Item

Update Catalog

Process ILL Request

Agree to Loan Request

Reject Loan Request

Process New Book

Consider an inter-library loan (ILL) system. An ILL system allows libraries to borrow

books from each other. If I go into my local library and they don’t have my book but

another library does, my library can borrow the book on my behalf from the other library.

I often run this exercise in my SIP workshops. Every group that has been assigned this

exercise comes up with some variant on what I will call the standard architecture.

The standard architecture has three services: Borrowing-Library, Inter-Library-Loan-

Service, and Lending-Library. These services, their methods, and the messages between

the services is shown in Figure 2.

Figure 2. Standard Architecture

If we plug the standard architecture into the formula for SOA complexity, we get a

reading of 891.

Calculating the Complexity of the Standard Architecture
The Borrower service has 3 business functions which contribute 30 SCUs

and 3 connections which contribute 30 SCUs.

The ILLA service has 6 business functions which contribute 261 SCUs and

7 connections which contribute 422 SCUs.

The Lender service has 4 business functions which contribute 74 SCUs and

4 connections which contribute 74 SCUs.

The total number of SCUs for the architecture is 30 + 30 + 261 + 422 + 74

+ 74 = 891.

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 11

Now let’s take a look at the SIP generated architecture. For those of you interested in

getting an idea of the SIP process, read the insert. If you just want to see the end result,

skip the insert.

The SIP Process for the Interlibrary Loan System

The SIP process starts with a decomposition of a system into atomic

business functions. An atomic business function is the lowest level of

functionality in a system that is still recognizable to the business.

The first level decomposition of the Interlibrary Loan System would look

like:

Interlibrary-Loan

 Borrower

 Lender

The decomposition continues:

Interlibrary-Loan

 Borrower

o Request-Book

o Process-Positive-Response

o Process-Negative-Response

 Lender

o Process-Borrow-Request

o Agree-To-Loan-Request

o Reject-Loan-Request

o Process-New-Book

o Update-Catalog

If we continue the decomposition we start getting into implementation

details. We don’t want to do that (it is way too early for implementation).

So we stop the decomposition.

We now have a collection of eight atomic business functions as follows:

 Request-Book

 Process-Positive-Response

 Process-Negative-Response

 Process-Borrow-Request

 Agree-To-Loan-Request

 Reject-Loan-Request

 Process-New-Book

 Update-Catalog

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 12

Next we partition this collection into subsets based on the relationship

called synergistic. Two atomic business functions A and B are considered

to be synergistic if, from the business’s perspective, A is not useful without

B and vice versa.

So, for example, Request-Book is synergistic with Process-Positive-

Response. It doesn’t make sense to request a book unless one can process

an agreement to loan the book.

Along the same lines, Request-Book and Agree-to-Loan-Request are not

synergistic. From the business perspective, borrowing books could be

useful even if one cannot loan books. And Update-Catalog is not

synergistic with anything else.

Once we have completed the synergistic analysis, we have the following

subsets:

Subset 1

 Request-Book

 Process-Positive-Response

 Process-Negative-Response

Subset 2

 Process-Borrow-Request

 Agree-To-Loan-Request

 Reject-Loan-Request

 Process-New-Book

Subset 3

 Update-Catalog

In SIP, every one of these subsets is autonomous with respect to the other.

That means, among other things, that data is not shared between subsets

and that any activity coordination must occur through work requests.

Based on the coordination through work requests, we notice a few missing

pieces. If Subset 2 does Process-New-Book and Subset 3 does Update-

Catalog, then Subset 2 must let Subset 3 know about the new book.

Similarly, if Subset 3 does Update-Catalog and Subset 1 does Request-

Book, Subset 3 must send the catalog over to Subset 1. Once we fill in

these missing pieces, we get these updated subsets:

Subset 1

 Request-Book

 Process-Positive-Response

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 13

 Process-Negative-Response

 Receive-Catalog

Subset 2

 Process-Borrow-Request

 Agree-To-Loan-Request

 Reject-Loan-Request

 Process-New-Book

Subset 3

 Update-Catalog

 Receive-New-Book-Item

We might as well name the subsets. The obvious names of Subsets 1, 2,

and 3 are Borrower, Lender, and ILLA (InterLibrary Loan Agency)

Two errors are frequently made during the SIP process. The first is ending

up with atomic business functions that aren’t really business functions but

are more like implementation details. The second is misunderstanding the

concept of synergistic placement.

Either of these errors can have serious ramifications as to the final

complexity of the architecture. In SIP workshops, we spend considerable

time on these two concepts.

There are three advantages to strictly following this process.

The first advantage is that the resulting architecture is the least complex

architecture possible that solves the business problem. Remember that

complexity is decreased by reducing functionality and increased by adding

connections. The decomposition results in smaller and smaller packets of

functionality. The synergistic placement results in the minimal number of

connections between functions. The combination of decomposition and

synergistic placement gives us the ideal balance.

The second advantage is that if the process is followed correctly, there is

only one theoretically possible outcome. Two different SIP-trained

architects should end up with similar results. This greatly simplifies

confirming results.

The reason a given SIP analysis has only one theoretical outcome is that the

synergistic function is in a mathematical family of functions called

equivalence relations. The mathematics of partitions guarantees that, for a

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 14

The SIP generated architecture is shown in Figure 3.

Borrower ILLA Lender

Borrow Book

Process Positive

Response

Process Negative

Response

Receive Catalog Receive New Book Item

Update Catalog

Process Borrow Request

Agree to Loan Request

Reject Loan Request

Process New Book

Figure 3. SIP Generated Architecture

If we plug the SIP generated architecture into the formula for complexity, we get 314

SCUs.

specific collection of items and a specific equivalence relation, there is one

and only one partition (outcome).

The third advantage is that the resulting architecture can be validated. We

can check the synergies in the subsets and verify that they have been

assigned correctly.

So in theory, this process guarantees that, for a given business problem, we

will find the unique partition of functionality that results in the least

possible complexity and we can verify that we have done this correctly. In

practice, this guarantee is highly dependent on how well the SIP facilitator

understands the process and how willing the SIP team members are to

work together in a collaborative manner.

Process is a means, not an ends. The goal is delivering higher quality IT

systems faster and at lower cost. To do this, we need to ensure that our

systems are architected as simply as possible while still meeting the

business problem. This is the value of SIP, not the process, but what the

process delivers.

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 15

Now we can ask the question, which architecture is better: the architecture designed by

the vast majority of architects or the architecture created when those same architects

follow the SIP process? Just from looking at the two architectures, it seems obvious that

the SIP architecture is simpler. The SCUs quantify the difference. The standard

architecture has 891 SCUs. The SIP architecture has 314 SCUs.

The complexity readings tell us that the SIP architecture has 35% of the complexity of

the standard solution. Assuming that SCUs correlate linearly with cost (which I believe

they do) the SIP architecture will cost 35% of what the standard architecture would cost.

We can take at least a high level look at this claim.

In the standard architecture, the ILLA service is involved with every loan request. If the

ILLA service is down, the whole system is down. This means that we need to run ILLA

on highly reliable hardware. The ILLA system also is going to be challenged as the user

population increases. This means that we need to run ILLA on some type of cluster

architecture. All of this means expensive hardware, complex software implementations,

and specialized programmers.

In the SIP architecture, the ILLA service is only involved in receiving new books into the

system and creating the catalog. This happens infrequently. Loan requests are directly

processed between the borrowing and lending libraries. If the ILLA service is down, the

system as a whole continues working fine. This ILLA service can be implemented on an

inexpensive PC by an entry level programmer in a few weeks.

Is the SIP architecture going to be exactly 35% of the cost of the standard architecture? It

is hard to say. But it is clearly going to be much cheaper to implement and run while at

the same time being more reliable, scalable, and most of the other desirable qualities that

we associate with good architecture.

Calculating the Complexity of the SIP Architecture
The Borrower service has 4 business functions which contribute 74 SCUs

and 4 connections which contribute 74 SCUs.

The ILLA service has 2 business functions which contribute 9 SCUs and 2

connections which contribute 9 SCUs.

The Lender service has 4 business functions which contribute 74 SCUs and

4 connections which contribute 74 SCUs.

The total number of SCUs for the architecture is 74 + 74 + 9 + 9 + 74 + 74

= 314.

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 16

Some might argue that they could have come up with the SIP solution without SIP. After

all, they might say, isn’t this a standard peer-to-peer pattern?

It is, indeed, possible that some architects might have come up with this solution. All I

can say for sure is that in my three years of conducting workshops on complexity with

highly experienced architects, none have yet.

And probability is not on their side. We have at least ten business functions that need to

be split up into services. There are 21,147 ways this could be done. Of these, 21,146 are

wrong in the sense that they are more complex than necessary. The chance that an

architect will come up with the one optimal solution, even with the benefit of years of

experience, is quite small. And, as I said, it hasn’t happened yet.

Simplifying Procurement
One additional benefit in using SIP is that you end up with self-contained subsystems. In

SIP terminology, these are called autonomous business capabilities (ABCs). Each of

these ABCs is a system that has the maximum autonomy possible with respect to the

business functions in other ABCs.

This means that each of these can be treated as an independent effort. They can be

architected, implemented, and delivered independently of each other. Because each

contains a collection of closely related business functions, each delivers useful business

value in its own right. And because the ABCs interoperate in well-defined ways, each

drops into the larger system relatively easily.

For those considering SOAs, the relationship between ABCs, an architectural concept,

and services, as an implementation concept, should be obvious.

This opens up a new possibility for procurement in an organization that outsources part or

all of its work. Typically a new system is bid as a large, monolithic, highly complex, very

expensive system. Very few vendors are capable of delivering such systems. The vast

majority are not even capable of responding to the bid request.

SIP opens up another approach: rather than bidding out one system, bidding out a number

of smaller, well defined, simpler, relatively inexpensive systems. Many smaller and

midsized vendors can compete for these bids.

This gives you greater control of your solution. You minimize your dependency on one

large vendor. And your partitioned solution allows you to more effectively choose the

right vendor for the right functionality thus playing to the strengths of the individual

vendor.

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 17

Take the InterLibrary Loan System as an example. Of course this example is far smaller

than the large systems I am discussing, but it serves to illustrate the concept of partitioned

procurement.

In the standard procurement process we would create a laundry list of the functions

needed. For the InterLibrary Loan System, this number is only ten, but a real life system

will have hundreds, perhaps thousands of functions. Because of the complexity of the

real-world systems, it could cost at least USD 100,000 just to respond to a large system

bid. This limits the field to a small handful of vendors. They will be bidding on a highly

complex system, which means they will be bidding high. And whoever wins has control

of your system.

In the SIP based procurement process, the SIP analysis would be completed before the

bidding was started (or as a preliminary project). In the case of the InterLibrary Loan

System, for example, we would have identified three systems, not one. Each of those

systems would be relatively simple. And each could be bid out independently of the

others.

Say it costs $100,000 to deliver a SCU. The total cost of the system is expected to be

around $891,000 (891 SCUs X $100,000/SCU). Rather than bid out a single system with

891 SCUs at an expected cost of $891,000, we bid out three smaller systems. The first

(Borrower) has an expected cost of $148,000. The second (Inter-Library Loan) has an

expected cost of $17,000. The third (Lender) has an expected cost of $148,000. The total

cost of the SIP architecture is $314,000 for a total savings of $578,000.

But perhaps just as important as the huge potential cost savings is the opportunity to

include small and medium-sized organizations in the bidding process. In existing

procurement processes, these organizations frequently get just the crumbs that fall from

the table of the large consulting organizations. In a SIP process, they can sit at the table

as equal partners.

Quick Review
Let’s take a moment for review. I have described the magnitude of the IT Failure problem

(I believe I used the term “meltdown”). I have identified the cause of this problem:

unmanaged complexity. I have shown how complexity can be measured. I have shown

how these measurements allow architectures to be compared for relative complexity. I

have described a process the leads organizations to finding the simplest possible

architecture for a given business problem. I have shown how this process will reduce

complexity, and thus failure rates and cost. And I have shown how a procurement process

based on simplification is good for both the client and the service providers.

At this point, haven’t the world’s problems been solved? Unfortunately, no. we have a

few impediments we must address.

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 18

Impediments to Simplicity
So what are the impediments to attacking complexity?

At this point, I am on shakier ground. I feel comfortable in the realm of logic, numbers,

and process. I feel less comfortable in the realm of psychology, group dynamics, and

organizational politics. Yet it is in this latter realm that most of the impediments lay.

When people choose not to follow my recommendations, it is usually because of one of

three reasons. I’ll cover each in turn.

Reason 1. Fear of New Process

Some believe that this process is new and therefore risky. In fact, this process is not new

and the risk factor is very low.

This process is more than two years old and has been used successfully by a number of

organizations. The cost of the SIP analysis is negligible compared to the cost of the whole

project, less than 5%. The SIP analysis is almost entirely completed before the usual

process begins. In the unlikely event that one is not satisfied with the analysis, the

process will at least bring a comprehensive understanding of the problem being

addressed, its needs, obstacles and potential solution paths. The much more likely

outcome is that you will reduce the overall project cost dramatically while simultaneously

improving the chances of overall project success.

For the InterLibrary Loan example, our cost is less than $44,000 for the SIP analysis (5%

of original cost of $891,000) and the potential benefit is $578,000 (the difference in cost

between the original architecture and the SIP architecture) plus numerous non-financial

benefits. Sounds like good odds to me. And in performing the SIP analysis, you will

better understand the business process and needed solution prior to implementation.

In any case, we know that what we are doing now is not working. What little perceived

risk there might be in trying something new is negligible compared to the risk of doing

things the same way we always have which, unfortunately, continues to cost us billions of

dollars in project failures

Reason 2. Fear of managing multiple vendors

Some believe that the cost of managing multiple vendors will more than make up for the

cost savings. This assumes that the cost of managing vendors is linear with respect to the

number of vendors. This is patently false.

The cost of managing a given vendor is linear with respect to the complexity of the

project that vendor is delivering. It is much easier (and cheaper) to manage three vendors

delivering three simple projects than it is to manage one vendor delivering one large,

complex project. There are numerous examples of failed complex projects that involved

only a single vendor. In fact, this is the norm; the large majority of big projects have

been bid out as single-solution projects, and many of these ultimately failed.

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 19

The use of multiple vendors also give you, the project owner, more control. You award

the projects based on the vendor’s strengths in that one area and you avoid being held

hostage to one large vendor that may be strong in one area yet weak in other areas.

Reason 3. Political Realities

Some believe that the political realities within their enterprise oppose efforts at

simplification. In some cases, they are right.

SIP requires a close cooperation across business groups. It assumes that business

functionality will be partitioned based on complexity impact, not based on which division

has the most political sway. It also requires a collaborative relationship between the IT

group and the business groups. In many organizations, this relationship is weak at best.

Because of the cross-organization cooperation needed, success is unlikely unless the

process is endorsed by senior management.

The belief by your executives that simplicity is not attainable is a self-fulfilling prophesy.

That’s the bad news. The good news is that the belief by your executives that simplicity

is attainable is also a self-fulfilling prophesy.

Introducing Simplicity Into Your Organization
In my experience, the best way to introduce SIP and a new culture of simplicity to an

organization is to start out small. Well, not too small. Say your next million dollar

project. Convince your executives that this approach has tremendous promise and suggest

that they try SIP on a relatively self contained project. Try to find one that is comparable

to other projects that have been done so that you can document the positive impact in

each of these areas:

 Reduced project cost

 Increased satisfaction with the end result

 Increased maintainability, agility, and scalability

 Improved morale

 Improved relationships between business and IT

 Better accuracy in predicting project deliveries

Once you have identified a candidate project, lay your groundwork. Learn about the

project. Understand the timeline, the issues, and the business reasons for supporting the

project.

Next, elicit the support of the project owner. Explain the problems with complexity,

Describe how complexity overwhelmed past projects and how SIP might help avoid their

fate. Discuss the benefits of SIP in terms of business benefit.

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 20

Ask the project owner to help you create a business case for SIP. Create a list of

candidate business functions. Show a standard architectural approach to partitioning these

functions. Run the complexity analysis. Run a quick and dirty SIP partitioning exercise

and give some estimates as to how much complexity might be reduced.

Give your business case in terms of cost/benefit. The full SIP analysis will cost X and

generate Y direct savings in reduced complexity and Z indirect savings as well as

improved chances of project success.

Step out of your current role and think like an executive. Evaluate all the issues that are

connected to this project. Create a compelling argument about how SIP will help.

Sell your boss on the solution and begin selling up the chain (with his/her help).

Once you are successful selling SIP, make sure you can deliver. Be aware of the pitfalls.

Bring in whatever expertise you need. Remember, if you fail on the first project, you are

unlikely to ever get another chance.

Once you have documented SIP’s benefits on a smaller project, you can suggest that SIP

be tried on a larger scale. Once SIP has proven itself on two significant projects, it will

take on a life of its own. Nobody will want to go back to the old way of creating IT

systems.

Call to Action
Okay, so now you know it all. If we are ready to save the world through simplification,

where do we start?

If I was to seek the ideal country to embrace simplicity, here are some of the

characteristics I would seek:

 The country needs to be big enough to support some seriously large IT projects.

Projects like the merging of cities, with their systems and business processes.

Projects like the re-architecture and delivery of more efficient and patient-

centered healthcare systems. Projects that look at innovation in the support of

large export-facing organizations. Projects that are looking at supporting

institutions that are focused on ensuring profits are kept in the country and

reinvested in the country.

 The country needs to have a healthy preference for local expertise and knowledge

over advice coming in from outside the country, which most of the times does not

scale to the local reality without some serious rethinking.

 The country needs to have a strong enough economy to support a healthy

ecosystem of small and medium sized consulting organizations.

 The people in the country need to take pride in showing the rest of the world that

they can lead the way.

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 21

 The country needs to have excellent education opportunities in the various fields

related to IT.

 The educational institutions need to be willing to incorporate training into the

importance of complexity control into their curriculums.

 And it goes without saying, the country must have truly outstanding coffee.

All of which lead me back to New Zealand. New Zealand scores on each of these points.

And of all the countries and states I have visited, I have found some of my most receptive

audiences in the beautiful island down under. And their coffee is to die for.

But of course, the campaign against complexity has barely begun. It’s an open field and

it’s anybody’s game. Perhaps the next success stories will not come from New Zealand.

Perhaps they will come from your country and your organization. Are you ready to

embrace simplicity? How do YOUR coffee shops stack up?

References
[01] http://topics.nytimes.com/top/reference/timestopics/subjects/c/credit_crisis

[02] Budget of the United States Government, Fiscal Year 2009, Analytical Perspective,

published by the Office of the President of the United States, page 169.

[03] The Standish Report is not available for free, but a good overview of the report is

available at http://www.pmhut.com/the-chaos-report-2009-on-it-project-failure

[04] GAO Testimony before the Subcommittee on Federal Financial Management,

Government Information, Federal Services, and International Security, Committee on

Homeland Security and Governmental Affairs, U.S. Senate, July 31, 2008.

[05] The Electronic Fraud Detection System Redesign Failure Resulted in Fraudulent

Returns and Refunds Not Being Identified, Office of the Treasury Inspector General for

Tax Administration, August 9, 2006, Reference Number: 2006-20-108.

[06] Glass’s Law comes from Robert Glass’s Fact and Fallacies About Software

Engineering. He did not discover the law. He actually described it from a paper by Scott

Woodfield, but Glass did more than anybody to publicize the law.

[07] Simple Architectures for Complex Enterprises by Roger Sessions

[08] The SIP White Papers are available at

http://www.objectwatch.com/white_papers.htm#SIP

The IT Complexity Crisis: Danger and Opportunity

Roger Sessions 22

About Roger Sessions
Roger Sessions, a tireless advocate for efficiency through simplicity, is the CTO of

ObjectWatch, a company he founded thirteen years ago. He has written seven books

including his most recent, Simple Architectures for Complex Enterprises, and dozens of

articles. He assists both public and private sector organizations in reducing IT

complexity by blending existing architectural methodologies and SIP. In addition,

Sessions provides architectural reviews and analysis. Sessions holds multiple patents in

software and architectural methodology. He is a Fellow of the International Association

of Software Architects (IASA), Editor-in-Chief of the IASA Perspectives Journal, and a

Microsoft recognized MVP in Enterprise Architecture. A frequent keynote speaker,

Sessions has presented in countries around the world on the topics of IT Complexity and

Enterprise Architecture. Sessions has a Masters Degree in Computer Science from the

University of Pennsylvania. He lives in Chappell Hill, Texas.

Roger loves feedback (and a good, stirring debate or two!) Join Roger in his crusade

against complexity. His blog is SimpleArchitectures.blogspot.com and his Twitter ID is

@RSessions.

For more information
For more information on how SIP can help you manage the complexity of your IT

projects, write information@objectwatch.com.

Legal Notices
This whitepaper is Copyright (c) 2009 by ObjectWatch, Inc., Houston, Texas. All rights

are reserved, except that it may be freely redistributed provided that it is redistributed in

its entirety, and that absolutely no changes are made in any way, including the removal of

these legal notices. ObjectWatch and SIP are trademarks® of ObjectWatch, Inc.,

Houston, Texas. The green logo is a trademark™ of ObjectWatch, Inc. All other

trademarks are owned by their respective companies. The SIP methodology is protected

by pending patents. SIP and Simple Iterative Partitions are trademarks of ObjectWatch,

Inc.

